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0. EXECUTIVE SUMMARY 

A possible indication of the existence of global climate warming is a negative trend for the 

travel time of an acoustic pulse along a fixed long path, or paths, in the ocean over a period 

of many years. A warmer ocean implies, on average, an increased speed of sound which 

in turn implies a decrease in this travel time. The use of long acoustic paths substantially 

reduces the variability of temperature from local ocean weather, potentially allowing the 

detection of underlying climate trends. If taken over a long enough period of time, this data 

may provide an indication that global warming is occurring, if, in fact, it is. The Acoustic 

Monitoring of Global Ocean Climate (AMGOC) experiment will measure acoustic travel 

times over a number ocean paths with the coupled goals of improvement of ocean models 

and detection of any existing warming signature. 

The goal of this report is the development of methods specifically for determining the 

presence of a long term trend for climate change from a temporal sequence of 

measurements of acoustic propagation times. This traveltime time series from the AMGOC 

experiment are expected to contain substantial weather scale variability which can have both 

deterministic and stochastic features. These fluctuations will make it difficult to detect the 

underlying smaller climate changes. Current ocean and coupled ocean/atmosphere models 

cannot reproduce the details of ocean variability so it is not now possible to remove such 

details from data in a deterministic manner. However, with additional understanding of 

ocean properties it becomes possible to substantially improve predictions of weather scale 

variability, at least in a statistical sense. Consequently, improved ocean models resulting 

from assimilation of the AMGOC data will provide the future basis for improved extraction 

of climate trends from the data. 

For current consideration, we present methods for extraction of possible warming 

signatures from the data that can be carried out without the explicit use of ocean models. In 

this report we develop techniques for use of statistical models for warming trend extraction 

which are based exclusively on the traveltime data. Even though such models are not 

precisely correct and only implicitly address the physics of the problem, it is often possible 

to capture many of the statistical properties of the time series by properly modeling the 

correlation structure of the process. 

Robust statistical methods for determining whether a significant trend is present in a given 

set of time series data have been developed and, for illustration, applied to some specific 

traveltime time series generated by the MASIG and GFDL ocean models, both with and 
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without warming. A popular approach to the problem has been to fit a line through the data 

and use statistical methodology to determine if this line has significant slope. However, by 

assuming such a model one has automatically assumed that if there is a trend in the past 

then there will be a similar trend in the future. Note that, at least implicitly, a statistical 

model must be assumed in order to draw a conclusion about the trend implications of the 

data. Since this assumption may not be correct we have considered alternative models 

which allow the trend component to be of a more general nature. In this report we limit 

ourselves to two types of models, the line + noise model, just described, and the so-called 

ARIMA model. This allows us a contrast between models since the ARIMA model allows 

for "temporary" trends and only predicts the previously observed trend to continue if the 

estimated correlation of the future to the past is sufficiently strong. Since the two 

competing models lead to opposite inferences it is necessary to attempt to use the data to 

determine which of the models appears most likely. 

Once the candidate statistical models are fit to the data, each model can be used to determine 

how often a time series similar to that given by the data, but of any length, will contain a 

significant trend. ARIMA models can give realizations which often have significant 

"random" trends, which would not be predicted to continue, but if the time series were not 

long enough it would be difficult to distinguish this from a "true" trend. It is therefore 

necessary to determine which model best describes a given time series. We describe 

methods of how, using the data alone, the data can be classified as line + noise or ARIMA. 

The reliability of these methods is contained in classification tables, which estimate the 

probability of classifying correctly and misclassifying a time series which is actually line + 

noise or ARIMA. We show that if the time series are long enough, somewhat over 20 

years, then series such as those simulated by the MASIG and GFDL models can be 

classified reliably as line + noise when this is the case. However, it is shown that the 

results are considerably different for the two ocean models under consideration and that 

these models can not currently be relied upon by themselves to predict global warming. 

Experimental data is most certainly needed, not only to measure global warming itself, but 

to help improve the ocean model themselves. 



1.  INTRODUCTION 

The release of carbon dioxide and other greenhouse gases into the atmosphere has been 

associated with changes in temperature of the earth's climate system, which includes the 

atmosphere and hydrosphere, whose most important component for climate change is the 

oceans. An increase in the average temperature of the climate system over time scales of 

many tens of years (whether due to increasing amounts of greenhouse gases or not) will be 

referred to as global warming. The oceans are a vast reservoir of heat and carbon, and as 

such, directly effect global climate changes. A direct measure of temperature changes in the 

ocean is therefore necessary to understand and predict global climate change and warming. 

Acoustic thermometry of the world's oceans offers a method of measuring large-scale 

temperature changes in the ocean [Munk and Forbes, 1989; Spiesberger and Metzger, 

1991]. Acoustic tomography was originally introduced by Munk and Wunsch [1979]. 

The idea behind acoustic thermometry is relatively simple. The speed of sound in the ocean 

increases about 4.6 meters per second for a one degree Celsius increase in ocean 

temperature. The travel time of an acoustic pulse transmitted from a source to a receiver in 

the ocean will therefore decrease in a warmer ocean. By transmitting acoustic signals over 

long distances (thousands of kilometers) an integrated measure of the temperature along 

that path will be obtained, with the benefit that local variations in the temperature due to, for 

example, mesoscale eddies, will automatically be averaged out. 

It seems reasonable to conjecture that if global warming is occurring the temperature along 

any given acoustic path in the ocean will be increasing with time, which would imply a 

decreasing travel time. Early studies from various global climate models suggest that this 

may not be the case [Mikolajewicz et al., 1990b; Manabe et al., 1991]. Results from these 

models show that if increasing amounts of carbon dioxide are added to the global climate 

system, then the temperature at most points in the ocean will increase with time, however, 

there will be some ocean regions, such as the Antarctic and the northern Atlantic, where the 

temperature will actually decrease with time (remember these are model results). The 

ATOC (Acoustic Thermometry of Ocean Climate) experiment currently plans to have two 

sources, one near Hawaii and one near Point Sur, and various receivers giving a total of 14 

paths, most in the northeast Pacific. In addition, the GAMOT (Global Acoustic Mapping 

of Ocean Temperature) experiment will include a number of surface suspended ocean 

receivers (SSAR). Model results indicate that warming, and, hence, decreasing travel 

times, are expected on these paths. As a first step in looking for a warming trend, it is 



reasonable to consider an individual path and test the traveltime time series for that path for 

a trend that decreases with time, which is the approach that will be taken in this report. The 

above comments concerning predicted cooling on some paths should always be kept in 

mind. Future work will address extraction of warming trends from a simultaneous analysis 

of data on many paths. 

This report will concern itself with methods to extract warming trends from time series 

consisting of travel time data from single ocean acoustic paths. Due to the current lack of 

experimental data, we will demonstrate our techniques on output from various climate and 

ocean models. This data will be discussed in the next section. Following a description of 

some theoretical aspects of trend extraction in time series analysis relevant to our purposes, 

we will apply these techniques to thoroughly investigate two specific time series generated 

by the MASIG (Mesoscale Air-Sea Interaction Group) ocean model and the GFDL 

(Geophysical Fluid Dynamics Lab) general circulation model. In the analysis we will show 

not only how to determine whether there is a significant trend in a given set of data, but 

how to choose which statistical model, from a select class, best describes the data. 

Different statistical models may give different forecasts as to whether a trend will be 

predicted to continue, so it is important to determine which model best describes the data. 



2. DATA 

Experimental data will be in the form of traveltime time series. The travel time is the time it 

takes for an acoustic pulse to travel from the acoustic source to the receiver (actually, there 

is a travel time between source and receiver for each acoustic mode, but we will ignore this 

aspect here). The ATOC experiment, for example, currently plans to have two sources, 

one near Hawaii and one near Point Sur, and various receivers giving a total of 14 paths, 

most in the northeast Pacific. Due to the current lack of experimental data—the experiment 

has been delayed for a number of reasons—it is necessary to demonstrate our methods of 

trend extraction on similar time series generated from ocean models. Since the main 

purpose of this report is describe our development of these methods, it is not necessary to 

use experimental data to demonstrate the usefulness of these techniques. Although the 

results we will obtain in this report are for simulated data only, they are of interest in their 

own right. Ocean models are in and of themselves an integral part of the ocean acoustics 

global warming experiment. It is only through these models, without excessive data, that a 

connection can be made between acoustic travel times, which is the form in which the data 

is obtained, and global ocean temperature, which is the quantity most closely related to 

global warming. It is therefore of great importance that the fidelity of the various climate 

and ocean models is continually checked and improved, and our methods and results will 

help to do this. 

Ocean and climate models do not compute acoustic travel times directly. Usually the 

models compute various ocean parameters, such as temperature, salinity, and current 

velocity, as functions of grid point (latitude, longitude, and depth) and time. A traveltime 

time series along a given path can then be computed by first using an equation of state to 

calculate a sound speed from the temperature and salinity (the pressure is a function of 

depth) and then using an acoustic propagation code to compute the travel time of a pulse 

from one end of the path to the other through the given sound speed profile. If there were a 

close correspondence between an experimental traveltime time series and the corresponding 

time series produced by the ocean model, then one would have confidence in using the 

model to predict the future behavior of the ocean, in particular, the model could be used to 

determine the rate of global warming in the future. In actuality the correspondence will not 

be good enough to make such claims with much certainty and the experimental data will at 

first be used to aid in improving the models. 



We will carry out a thorough trend extraction analysis on simulated data obtained from two 

models: 1) the MASIG model, and 2) the GFDL model. The MASIG (Mesoscale Air-Sea 

Interaction Group) model is a reduced gravity ocean model driven by COADS 

(Comprehensive Ocean-Atmosphere Data Set) winds, coupled to an equatorial model at its 

southern boundary [Pares-Sierra and O'Brien, 1989]. A twenty year simulation (for the 

years 1970-1990) of the northeast Pacific ocean was run and changes in acoustic travel 

times over 10 paths from Hawaii to various locations on the western shore of North 

America were computed. These 10 time series were provided by Jim O'Brien of Florida 

State University. 

The GFDL (Geophysical Fluid Dynamics Lab) general circulation model is a coupled 

atmospheric-ocean-land surface model with global geography [Manabe et al., 1991]. This 

model is one of the current best predictors for global warming due to increased greenhouse 

gases, so the trends it predicts for acoustic travel times are the "state-of-the-art best 

guesses". We purchased from the NCDC (National Climatic Data Center) two tapes which 

contained output from the GFDL model for a set of simulations run in 1989. The data 

included temperature and salinity computed at points on an ocean grid at 12 depths for one 

hundred years. Output was stored every month, so all time series consisted of 1200 

points. There were two separate runs: one was a control run in which constant levels of 

CO2 were input to the system and the other run had increasing CO2 levels of 1% per year. 

This warming run gives increasing ocean temperatures with time. Traveltime time series 

were obtained by integrating sound speed, obtained from temperature, salinity, and 

pressure (depth) using an appropriate equation of state, along the sound channel axis 

(sound speed minimum) along the path from source to receiver location. 

In addition to the simulated data for which we have carried out extensive trend analyses we 

have also obtained further simulated data from two other models: 3) the Semtner-Chervin 

model, and 4) the Hamburg model. Although we do not include in this report time series 

analyses for these data sets, we provide here a description of the output for reference. 

Output from the Semtner-Chervin ocean general circulation model (OGCM) [Semtner and 

Chervin, 1988], which was sent to us by Dimitris Menemenlis at MIT, is in the form of 

time series of average temperature along 13 paths at 20 separate ocean depths over a time 

period of about 1350 days (3-4 years) given at 3 day intervals. Equivalent traveltime time 

series were approximated from these temperature time series by using the relation [see 

Spiesberger et al., 1992; Spiesberger et al., 1989] 
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where T is the equivalent traveltime, T is the time-averaged travel time for a given path, 

AT = T - T, A0 is the temperature change, and k = 3.19xl0-3 / degree Celsius. 

Output from a simulation using the Hamburg OGCM with forcing climatological boundary 

conditions by stochastic freshwater fluxes, was provided by Uwe Mikolajewicz 

[Mikolajewicz et al., 1990a]. The simulation covered a period of 3800 years and output 

(such as temperature and salinity as a function of position) was obtained at two year 

intervals. Acoustic travel times along 106 paths were computed by integrating the ocean 

sound speed along the sound channel axis. In this manner 106 traveltime time series 

covering 3800 years at 2 year intervals were obtained. In addition, a second set of time 

series along the same 106 paths was obtained by running the model with a greenhouse 

warming boundary condition over a 100 year period, the output being given at 2 year 

intervals. This latter case had no stochastic freshwater flux. 

Before turning to an analysis of specific traveltime time series simulated by the MASIG and 

GFDL models, a description of the time series analysis techniques which will be used in 

the analysis is provided in the next section. 



3. THEORY 

In the remainder of this report we will be concerned with time series giving the travel time 

of an acoustic pulse along a single path from a source deep in the ocean to a distant 

receiver. If it is assumed that a time series is a stochastic process (this can also mean that 

the series has a deterministic component and a stochastic, noise component) then to make 

statements such as "there is a significant trend in this time series", requires some 

assumptions about the stochastic nature of the process. A statistical model must be chosen 

to describe the data, and only in the context of the model can questions of a probabilistic 

nature be posed and answered. Since one can never know what model (or physical 

process) generates the data, then one must attempt to choose the best approximate model 

from whatever list of choices is available and tractable. Even though such a model is not 

precisely correct and only implicitly addresses the physics of the problem, it is often 

possible to capture many of the statistical properties of the time series by properly modeling 

the correlation structure of the process. The resulting statistical model can then be used to 

economically generate realizations which are representative of the data one would expect to 

obtain from an experiment or appropriate OGCM. That is, realizations from the statistical 

model can be generated easily for statistical analysis, while generating similar data from the 

actual circulation model would be prohibitively time consuming. If the data comes from an 

actual experiment it may be impossible to retake the data in a statistically meaningful way. 

3.1. Time Series Models 

Let the time series for traveltime anomaly be given by the discrete stochastic process 
{Xt; t = 0,±1,...}, where Xt is a random variable giving the travel time as a function of 

time, t. The time unit is usually taken to be the time interval between successive readings. 

For the GFDL model, for example, the time unit is one month, so Xx would be a random 

variable describing the travel time for month 1 (t = 1), X2 the travel time for month 2, and 

so on. A realization of length n of the time series, Xt, is a set of real-valued outcomes 

which will be denoted {xt;t = l,...,n}. Loosely speaking, a set of traveltime data, xt, will 

be considered a realization from a traveltime time series, Xt. 

Two different statistical models will be used to analyze the traveltime time series, line + 

correlated noise and ARTMA. The line + noise model is given by 

Xt=a + bt + Et, (1) 



where Et is an ARMA (autoregressive-moving average) process [for a detailed account of 

ARMA processes see Box and Jenkins, 1976 or Gray et al., 1994]. An ARMA(/?,<?) 

process, [Et}, is defined by 

$(B)Et = e(B)at, (2) 

where 5 is the backward shift operator given by BnXt = Xt_n, 

0(5) = 1-^5-025
2 <ppBp, (3) 

d(B) = l-dlB-d2B
2 6pB

q, (4) 

and at is discrete white noise with zero mean and variance aa, i.e., E[at] = 0 and 

£'[a2| = (7%. The ARIMA(p,d,q) (autoregressive integrated moving average) model, 

{Xt}, is defined by 

<t>(B)(l-B)d(Xt-ß) = 0(B)at, (5) 

where the parameter d is an integer, usually 1 or 2, \i is the mean of the process, i.e., 

E[Xt ] = ß, and the remaining parameters defined as above. 

The characteristic equation of a general ARMA process (the ARIMA process defined by 

equation (5) is a special case) with autoregressive operator 0(5) is defined by 0(r) = 0, 

where r is a complex number and 

0(r) = l-0!r-02r
2 — -</>/\ (6) 

An ARMA process is stationary (stable) if and only if the roots of the characteristic 

equation lie outside the unit circle. It turns out that models which have found much 

application in the physical sciences have roots that lie on (or outside) the unit circle. As can 

be seen in equation (5), ARIMA models have d roots of the characteristic equation on the 

unit circle. The autoregressive operator 0(5) can be factored into irreducible first and 

second-order factors. The roots associated with the irreducible second-order factor, 

1 - 0C\B - a2B
2, are complex conjugates whose absolute reciprocal is ^-oc2 .  The system 

frequency associated with this factor is 

/     1        -i f = — cos 
2K 

( 
«l 

2VZö2~ 
(7) 



where frequency is in cycles per unit time. For a first order factor, 1 - axB, the absolute 

value of the reciprocal of the associated root is \ax\ while the associated frequency is / = 0 

if ax > 0 and /' = 1 / 2 if ax < 0. Factors associated with roots near the unit circle 

dominate the behavior of an ARMA model. Factor tables, as defined by Gray and 

Woodward [1986], are quite useful in understanding the behavior of an ARMA model. 

The difference between the two statistical models, (1) and (5), may best be understood by 

considering the "best" forecast function. For the line + noise model, (1), the best eventual 

forecast is for the line to continue. For the ARIMA model, (5), if d = 1, the best eventual 

forecast is a constant, approximately equal to the last observation. However, because there 

is a root on the unit circle, there will be long random trends [see Gray et al, 1994], which 

may be significant, and for time series of moderate length it may be difficult to determine 

which model best fits the data and, therefore, difficult to determine if an apparent trend will 

continue or not. If d = 2 in model (5) then the best eventual forecast is a straight line 

primarily determined by the last p + d sample points. In the sequel, we will determine 

whether a given time series is best modeled by line + AR (we will consider only noise 

given by a stationary AR process), (1), or ARIMA with d = \, since ARIMA with d = 2 

results in the same inference as a line + AR model, i.e., the conclusion that under the 

business as usual (BAU) scenario the current observed trend will continue. 

Two types of questions can be asked given these two models: 1) Given data in the form of 

a traveltime time series and one of the models, what are the best fit parameters and does the 

model imply the existence of a significant warming trend? This question has been treated 

by Woodward and Gray [1993], which we follow here. 2) Which model, line + AR or 

ARIMA, actually fits the data better [Woodward and Gray, 1994]? The best fit parameters 

of a given model can be defined in various ways and the estimation of the parameters, 

while straightforward, must usually be done numerically [see Box and Jenkins, 1976]. If 

the estimate of the parameter b, in the line + AR model is significantly less than zero, then 

the line + AR model suggests that a warming trend exists and would be predicted to 

continue under the BAU assumption. Of course, the validity of such a prediction depends 

on how well the data has been modeled and whether or not the model remains valid in the 

future. If d > 2 in the ARWLA(p,d,q) model, then a trend would be predicted to continue, 

however, if d = l, while there will be intervals of the series which show substantial 

"random" trends, such trends would not be predicted to continue for a prolonged period of 

time, even in the BAU case. 

10 



3.2. Testing for Trend in Time Series Data 

Let us first consider question 1): is there a significant warming trend in the data? We wish 
to test a given time series for traveltime anomaly, {xt;t = l,...,n], for the presence of a 

negative linear trend. The standard approach is to assume the data is a realization from the 

model given in equation (1), and test the hypothesis b = 0 against b<0. If the 

hypothesis is rejected at an appropriate significance level, then it is generally accepted that a 

linear trend is present. If one uses a basic regression approach, then the least squares 

estimators for b and a in equation (1) are 

5>-f)x, 
t=\ 

S(f-'T 
r=i 

(8) 

a = X-bt, (9) 

where 

1  n 

nt=l 

1   " n + \ 

(10) 

(11) 
t=\ 

Sample estimates of these quantities are obtained by substituting the sample data xt into the 

appropriate equation. Under the usual regression assumptions that the residuals are 

independent and normally distributed with mean zero and variance o , the estimated 

standard error of b is given by 

SEm(b) 

12JT(X, -a-btj1 

t=\ 

(n-2)n(nl-l) 

1/2 

(12) 

Under these assumptions, the test statistic r(1) = b I SE^\b) is distributed as Student's t 

with n-2 degrees of freedom when the null hypothesis Ho: & = 0 is true. For a 

realization r( ' can then be compared with the value for which the Student's t distribution 
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with n-2 degrees of freedom yields a given significance level, say 95%. The null 

hypothesis is rejected, and the line is said to be significant, if f(1) < -f„_2(0.05), which is 

the critical region for the test (tn_2(0.05) is approximately equal to 1.65 for large n, i.e., it 

is asymptotically normal). 

If the independent errors assumption of the standard regression analysis is not made, then 
the above analysis must be extended. If the residuals Et in equation (1) are assumed to be 

given by an autoregressive (AR) process (q = 0 in equation (2)), then Bloomfield and 

Nychka [1991] show that the standard error in this case is given by 

r     .1/2 -|l/2 

SE{2\b) =  21    W(f)S(f)df 
L Jo 

(13) 

where 

W(f) = -2m ft (14) 

with 

*t=-n 

t-t 

Xc-f)2 

r=l 

(15) 

and S(f) denotes the spectrum of Et. An estimator for this standard error, SE^2\b), can 

be obtained by replacing S(f) in equation (13) with an appropriate estimate, in our case 

we fit an autoregressive model to 

Et = Xt-a-bt (16) 

and use the corresponding autoregressive spectral estimator to estimate S(f).   The test 

statistic 

;(2) b/SE{2\b) (17) 

can now be defined. We test the null hypothesis of no trend, Ho: b = 0. For a given time 

series, xt, we reject the HQ at the nominal a =.05 level whenever r(2) is less than -1.65. 

12 



For a given set of traveltime time series data, least squares estimates for a and b can be 
computed using of equations (8) and (9), and the residuals  Et computed using 

equation (16). An AR model can then be fit, using standard techniques, to these residuals. 

In order to determine the power of the test of the hypothesis Ho: b = 0, versus the 

alternative hypothesis Hj: b < 0, we analyze a large number of realizations, 100 say, of 

model (1) for a given set of parameters . The power of the test is the probability of 

rejecting the null hypothesis Ho when Ho is false (Hi is true) and is conditional on b. We 

can estimate this probability by counting the proportion of those realizations for which Ho 

is rejected, that is, those realizations for which a significant negative slope is found when 

b = bx < 0. If there is reason to believe that the estimated AR model for the residuals 

represents the noise for any time, then this same test can be applied to time series of 

different length. It should be clear that for a given slope, b, realizations of greater length 

will produce a larger fraction of time series with significant slope. Simulations can be 

performed which determine the power of this test as a function of series length, and that 

series length for which the power has a desired value, say .8 for example. 

It may be the case that the time series data is modeled better by the model defined by 

equation (5) (a method which uses the data itself to choose the better model will be 

discussed below). If d = 1 in equation (5) then the null hypothesis of no trend is 

technically true (the null hypothesis is also true for any stationary time series). Woodward 

and Gray [1993] have shown, however, that for such time series, for realizations of 

moderate length, say n around 100, a much larger proportion than the significance level 

will be rejected, for the null hypothesis test described above. That is, for such realizations, 

the test will lead one to infer the presence of a trend, when no such trend exists, much more 

often than the significance level states. This analysis therefore indicates that trend detection 

in a given set of time series data depends on which model is chosen for the time series. By 

choosing the best fit line + noise model one has automatically assumed that if there is a 

trend in the past, there will be a similar trend in the future. If the ARIMA with d = 1 is 

chosen, however, then long trends may be present in some span of the data, but this trend 

will not be predicted to continue (there will be similarly long spans in the future where the 

apparent trend will be in the opposite direction). Therefore, if a significant trend using the 

above test is found in a time series of moderate length, this does not necessarily mean that 

the best forecast is for the trend to continue, for if the data actually comes from an ARIMA 

model (or is better fit by an ARIMA model) then this trend is only apparent and the best 

forecast would be for the trend not to continue. Physically one may think of such "trends" 

as being triggered by natural events which will eventually subside and reverse the trend. 
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Unlike cycles, the times when these reversals will occur are not predictable. In the next 

section, where we analyze specific time series, we will fit both a line + noise and ARIMA 

model to the data, and compute the proportion of realizations which show significant trend 

when the true model is ARIMA. If this proportion is substantially larger than the 

significance level, this will be an indication that the false alarm rate (significant trend is 

detected when false) is large enough to be of concern. This brings us to the question 2): 

which model, line + AR or ARIMA, actually fits the data better. 

3.3. Selecting a Model: The Bootstrap Procedure 

To allow the data itself to choose which model, line + AR or ARIMA, is better, we employ 

a parametric bootstrap procedure, developed by Woodward and Gray [1994]. The 

technique is an extension of a procedure suggested by Tsay [1992] for model checking in 

the time series setting, which consists of assessing whether realizations from a fitted model 

are sufficiently similar to the observed realization. We utilize the parametric bootstrap to 

choose between the two competing models, along with a classification procedure to make 

this decision. 

We wish to classify a given time series, {xt;t = l,...,n}, as belonging to either population 

(1), line + AR, or population (2), ARIMA. Our procedure will be first to model the given 

time series by model (1), equation (1), and model (2), equation (5), respectively. Many 

realizations, say 100, are generated from each model for the purpose of providing "training 

samples". Classification variables, which are potentially useful for discriminating between 

realizations from models (1) and (2), are calculated for each of the simulated realizations. 

These are treated as training samples from the populations of classification variables for the 

two models. The classification variables are also calculated on the original time series and 

the resulting "observation" is classified as being from model (1) or (2) using standard 

classification procedures. 

Two diagnostic ratios are used as classification variables: 

(a) The ratio R{ = WNV (line + AR fit) / WNV (ARIMA fit), where WNV 

denotes the sample white noise variance, 

(b) R2=^\b\/SE{2\b), with b as in equation (8) and SEm{b) as in 

equation (13). 
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For each time series to be classified, we perform two classifications, a univariate 

classification based on the white noise variance ratio alone, and a bivariate classification 

using Anderson's linear discriminant function [Anderson 1984], based on both of the 

above ratios. For each classification we generate B = 100 bootstrap realizations of the 

length of the original time series from each of the two models fit to the series. The 

classification variables R{ and R2 are calculated for each bootstrap realization and the 

resulting 2B observations are treated as training samples, B from model (1) and B from 

model (2). Under the assumption that the distribution of the test statistic array for both 

models is multivariate normal with a different mean for each model but the same covariance 

matrix, then Anderson's linear discriminant function is applicable. To estimate this 

function using the training samples, let Ry , j - l,...,nt, denote the training sample from 

model (/), i = 1,2, where the vector R^ = (R^,R^y in the bivariate case. The mean for 

each model is estimated by 

^(0      1 R(0=_L£R(0t  i = l2, (18) 
j=i 

and the pooled estimate of the covariance matrix is 

S = 
1 

nl + n2 ~ 2 \J 

X(R^ -R^Rj1' -R(1)) +t(Rf} -R(2))(Rf -R(2)) 
A 

=l 
• (19) 

In our case nx=n2 = B. The classification criterion is defined as 

V(R) = R_i(R(D+R(2))     S-^RW-R^), (20) 

where R is the observation vector of ratios for the original time series. We then classify 

the observation, R, as being from model (1) if V(R) > 0 and as being from model (2) if 

V(R) < 0. 

For the univariate classification which uses only the ratio of white noise variances as the 

test statistic, vector quantities such as R are replaced by the scalar R{ in equations (18)- 

(20). The classification criterion (20) is then equivalent to 

EKR0 = *i-#, 
(2) 

fl A/1* (21) 
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We classify the observation, R{, as being from model (1) if £>(#i) 2 0 and as being from 

model (2) if D(i?j) < 0. This amounts to saying that the observation R{ is classified as 

belonging to model (1) if it is closer in absolute value to the average value of the white 

noise variance ratios for all the realizations from model (1), R}1), than to those of model 

(2), and it belongs to model (2) when it is closer to /?/2). 

Finally, we would like to estimate the probability of misclassification. Our classification 

procedures have assumed that a given time series has equal a priori probability of being 

from the population of model (1), line + AR (probability K{), and model (2), ARIMA 

(probability K2), and that an equal cost of misclassification has been assigned to each of 

the two types of misclassification: 1) classifying a time series as belonging to model (2) 

when it is actually from model (1), C(2I1), and 2) classifying a time series as belonging to 

model (1) when it is actually from model (2), C(1I2). Let the probability of the first type 

of misclassification be P(2I1) and the second type of misclassification be P(1I2). Our 

classification procedures are chosen to minimize 

C(2I1)P(2I1)7T1 + C(1I2)P(1I2)7T2 (22) 

where we have assumed nx =K2 = 1 / 2 and C(2I1) = C(1I2). One can construct what is 

sometimes called a classification matrix, or "confusion matrix", which shows the two 

probabilities for misclassification as well as the probability of correctly classifying a time 

series from model (1) as model (1), P(lll), and the probability of correctly classifying a 

time series from model (2) as model (2), P(2I2): 

Actual Model 

Line + AR ARIMA 

Predicted 
Model 

Line + AR 

ARIMA 

P(lll) P(1I2) 

P(2I1) P(2I2) 

The probabilities in the above chart can be estimated in the following way. For a given 

time series, a line + AR model and ARIMA model are fit to the data. A large number of 

realizations (usually limited by computer time), say 100, are run for each model. For each 

realization of the actual model, B bootstrap realizations are simulated for both predicted 

models. Each realization of the actual model is then classified as line + AR or ARIMA 

using the classification procedures described above. The proportion of those actual line + 

noise realizations which are classified correctly as line + noise gives the probability P(lll), 
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the proportion of those actual line + AR realizations which are classified incorrectly as 
ARIMA gives the probability P(2I1), the proportion of those actual ARIMA realizations 

which are classified correctly as ARIMA gives the probability P(2I2), and the proportion 

of those actual ARIMA realizations which are classified incorrectly as line + AR gives the 

probability P(1I2). These probabilities will be functions of series length. Once models are 

chosen to fit the data, realizations of any length may be simulated to estimate the 

probabilities as functions of series length. 
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4.  ANALYSIS 

Two traveltime time series were chosen from the available simulation data on which the 

time series analyses described in the previous section were thoroughly performed, one 

series from the MASIG model and one from the GFDL model. Each time series gives the 

traveltime anomaly (the travel time minus the average travel time) taken at monthly intervals 

along an acoustic path from Hawaii to San Diego. The distance along the path is 

approximately 4000 kilometers and the travel time is about 2600 seconds (43 minutes). 

The path is shown in figure 1. 

Figure 1. Acoustic path from Hawaii to San Diego. 

4.1. MASIG Model 

Figure 2 shows a plot of a time series for acoustic traveltime anomaly along a path from 

Hawaii to San Diego computed using output from the MASIG model. The time axis is 

given in years. The time series contained 1440 data points spaced at 5 day intervals. For 

purposes of convenience, a year is taken to be 360 days, so the entire time series represents 

20 years. An average over 6 data points was then obtained, resulting in a time series with 

240 points, the time interval being one month (30 days). As can be seen in the figure, the 

traveltime anomalies are between ± 2 seconds. This time series, which represents the 

model years 1970-1990, has no trend (the slope of the best fit straight line is close to zero). 
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Figure 2. Time series for acoustic traveltime anomaly from the MASIG model. 

If there were warming occurring during this period the time series would look similar to 

that shown in figure 2, except that there would be added to it a warming trend. In this 

context, a warming trend would be given by a negative slope (the best fit straight line 

through the data would have a negative slope). A slope of-0.10 seconds/year, a change of 

-2 seconds over 20 years, would correspond to an approximate increase in temperature 

along the path of 0.01 degrees Celsius per year, or 0.2° C increase over 20 years (a slope 

of-0.05 sec/yr would give half these values). For the following analysis, which is meant 

to demonstrate how, and with what reliability, significant trends can be extracted from time 

series data, we consider the time series given in figure 2 with lines of various slopes added 

to the original time series. 

Lines with slopes of -0.05 sec/yr and -0.10 sec/yr were added to the time series given in 

figure 2. The resulting time series, along with the original time series, are plotted in 

figure 3. The time series with the added slope of-0.05 sec/yr is given by the dotted curve 

and the time series with the added slope of-0.10 sec/yr is given by the dashed curve (the 

original time series, marked "no trend", is plotted with the solid curve). The first question 

to be addressed is whether there is a significant trend, as a function of series length, in 

these times series. Each time series has 240 values (20 years). We test for trend in each of 

these time series for various portions of the series using the test described in the previous 

section. We consider series of length 5, 10, 15, and 20 years (the first 60 points, the first 

120 points, etc.).   For each series the test statistic r(2), given in equation (17), is 
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Figure 3. MASIG time series with trends added. 

computed. If f(2) is less than -1.65, we say there is a significant negative slope (which 

corresponds to a significant warming trend). Table 1 gives the value of r-; (and whether 

slope is significant) for the two slopes considered and the four series lengths. 

SLOPE 

Years -.05 sec/vr -.10 sec/yr 

5 1.207 (Not Sig) 0.003 (Not Sig) 

10 3.956 (Not Sig) 0.012 (Not Sig) 

15 0.747 (Not Sig) -0.001 (Not Sig) 

20 -1.190 (Not Sig) -2.217 (Significant) 

Table 1.   r(2) (and significance) for time series from MASIG model. 

As can be seen in the table, the only significant negative slope occurs for the slope of 

-. 10 sec/yr and the full 20 years length. Figure 4 shows a plot of this time series with the 

significant best fit line superimposed (dashed line).  Interestingly, there is a significant 
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Figure 4. MASIG time series with significant trend. 

positive slope in the first ten years of the data even when the slope of -.05 sec/yr is added 

to the data, which an examination of figure 3 will show is not surprising. Any portion of 

the original time series, with a line having any slope added to it, may be tested for trend in 

this manner. 

In order to determine how often one can expect to find a significant trend in similar time 

series (we are assuming now that an experimental time series will have the same correlation 

structure as those in figure 3), which amounts to computing the power of the test for 

significance, we model the time series as line + AR as in equation (1). We model the 

original time series, with no slope added, as an AR process. The best fit model is an 

AR(10), given by 

1- 2.17655+ 1.692652-.944353+.7730S4-.679355+.434856 

-.060857+.236958-.4745ß9+.2024ß10)£f = at, 
(23) 

with white noise variance c~a = .001196.  The factor table associated with the AR(10) 

operator given in equation (23) is shown in table 2. 
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Factor 
Absolute Reciprocal 

of Root 
Frequency 

(cycles/month) 
Period 
(years) 

1-1.8735+.88452 .940 .014 5.87 

1-.7685+.81852 .905 .180 0.46 

1+.6705+.73852 .859 .314 0.27 

1-1.5405+.63552 .797 .041 2.02 

1 + 1.3345+.59852 .773 .416 0.20 

Table 2. Factor table associated with AR(10) model fit to MASIG data. 

As can be seen in the factor table, the dominant frequency (the frequency associated with 

the root with absolute reciprocal closest to the unit circle) is 0.014 cycles per month, with a 

corresponding period of about 6 years. This period may be related to an ENSO (El Nino 

Southern Oscillation) cycle and is not surprising. 

Realizations from line + AR(10) models of any length, with a given line, may now 

simulated. Figure 5 shows typical realization from the model 

Xt = -0.00S3t + Et, (24) 

with Et computed using equation (23). The slope -0.0083 sec/month is equal to 

-0.10 sec/yr. As can be seen, this typical realization has similar statistical properties as the 

dashed curve in figure 3. To compute the power of the test for trend, 100 realizations 

from the model given by equation (24) and 100 realizations from a similar model with a 

slope of -0.05 sec/yr (-0.00042 sec/month) with lengths of 5, 10, 15, 20, 25, and 30 

years were simulated and each realization was tested for trend. The percentage of those 

realizations which had a significant trend are shown in table 3. 
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SLOPE 

Years -.05 sec/vr -.10 sec/vr 

5 32 40 

10 29 41 

15 23 56 

20 38 79 

25 55 94 

30 66 100 

Table 3.   Percentage of realizations with significant slope for the MASIG model. 

As would be expected, the table shows that it is more likely to detect a trend for a steeper 

slope and for a longer time series. As can be seen in the table, a slope of -. 10 sec/yr is 

detectable about 80% of the time for time series of 20 years length. Note this is the slope 

that was added to the MASIG data and detected after 20 years, so that these statistical 

simulations appear quite consistent with the MASIG model. However, in this case, since 

6 8 10 12 
time   (years) 

14 16 20 

Figure 5. A typical realization from line + AR(10) model. 
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we can generate as many realizations as we like, we can see that for such data this slope 

would be detected within 25 to 30 years with virtual certainty. A slope of -.05 sec/yr is 

reasonably detectable (about 66%) after about 30 years. 

The best forecast for the line + AR(10) model with a significant slope is for the trend to 

continue indefinitely. However, one does not know in advance the best model for the data. 

For example, an ARIMA model could produce similar realizations. We now fit the data to 

an ARIMA model. A line with slope -.10 sec/yr was then added to the original time series 

and the resulting best fit ARIMA model was 10th order with one unit root, i.e., it was an 

ARIMA(9,1,0), given by 

(1 - B) (l -1.20605+. 523052 -. 444953 +. 343354 -. 340255 

+.100956+.047157+.270658-.180059)xr = at, 
(25) 

with white noise variance  aa =.001231.    The factor table associated with the 

ARIMA(9,1,0) operator given in equation (25) is shown in table 4. 

• 

Factor 
Absolute Reciprocal 

of Root 
Frequency 

(cycles/month) 
Period 
(years) 

l-B 1.000 0 — 

1-.7785+.81552 .903 .179 0.47 

1-1.7345+.78252 .884 .032 2.65 

1+.6615+.72752 .852 .313 0.27 

1 + 1.3135+.58252 .762 .415 0.20 

1-.668B .668 0 — 

Table 4. Factor table associated with ARIMA(9,1,0) model fit to MASIG data. 
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Figure 6. A typical realization from ARIMA(9,1,0) model. 

35 40 

This model will produce many realizations similar to the original time series + line but for 

which the trend would not be forecast to continue. Figure 6 shows a typical realization 

from this model. Even though there is a significant slope in this time series (when modeled 

as line + AR), as ARIMA(9,1,0) that trend would not continue for a sufficiently long 

realization length. 100 realizations from this model with a series length of 20 years (240 

points) were simulated and the trend test found significant slope in 59% of the realizations, 

which is a substantial percentage for a model for which there is no true trend. Thus, clearly 

it is necessary to determine which model is more representative of the data. 

The difference in the two models, line + AR(10) and ARIMA(9,1,0), is demonstrated by 

comparing figures 7 and 8, respectively. Each figure shows four realizations from each 

model, figure 7 showing realizations from the line + AR(10) model, with slope equal to 

-0.10 sec/yr, and figure 8 showing realizations from the ARIMA(9,1,0) model. The first 

20 years of each plot is the original time series plus a line with slope -0.10 sec/yr and the 

second 20 years of each is a realization from the appropriate model. As can be seen in 

figure 7, each time series from the line + ARC 10) model continues during the second 20 

years with a slope equal to the slope for the first 20 years. In contrast, the second 20 years 

for the ARIMA(9,1,0) realizations have both positive and negative slopes, demonstrating 

that the negative slope in the first 20 years would not be forecast to continue if the 

ARIMA(9,1,0) was a suitable model. 
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Figure 7. Realizations from line + AR(10) model. 
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Figure 8.  Realizations from ARIMA(9,1,0) model. 
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To determine if the data alone can determine which model best describes the MASIG time 

series, line + AR(10) or ARIMA(9,1,0), we apply the parametric bootstrap classification 

procedure described in the previous section. We consider only the series with the added 

-0.10 sec/yr slope and the full 20 years, since this was the only time series containing a 

significant trend (see table 1). 100 bootstrap realizations from the line + AR(10) model 

given in equation (24) and 100 bootstrap realizations from the ARIMA(9,1,0) model given 

by equation (25) were simulated and the appropriate test statistics were computed. The 

classification criteria given in equation (21) for the univariate white noise ratio 

classification and in equation (20) for the bivariate classification combining the white noise 

ratio and the square root of the /-statistic were then computed for the time series data. The 

result was that the univariate classification chose the ARIMA as the best model and the 

bivariate classification chose line + AR, indicating a close call. 

To estimate the probability of misclassification and fill in the entries to the classification 

matrix, 20 realizations of each model were simulated. For each realization with a 

significant trend (there were 14 for the line + AR(10) model and 11 for the ARIMA(9,1,0) 

model, consistent with the statistics of table 2), 50 bootstrap realizations from each model 

were simulated (the number of realizations is limited by computer time constraints) and test 

statistics calculated. The classification matrix for the univariate white noise ratio 

classification is shown in table 5 and for the bivariate classification in table 6. 

Actual Model 

Line + AR ARIMA 

Predicted 
Model 

Line + AR 

ARIMA 

11/14 3/11 

3/14 8/11 

Table 5.  Classification matrix for the univariate white noise ratio classification for MASIG 

data. 
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Actual Model 

Line + AR ARIMA 

Predicted 
Model 

Line + AR 

ARIMA 

11/14 4/11 

3/14 7/11 

Table 6.  Classification matrix for the bivariate classification for MASIG data. 

The tables show that for each classification the estimated probability of choosing line + AR 

when the time series actually is line + AR is almost 80%. Note that the white noise 

classification has a 20% chance of selecting ARIMA when the time series is line + AR. 

The probability of choosing ARIMA correctly is about 60-70%. It is not surprising that 

the two classification procedures do not agree here. Which of the two approaches is best is 

yet to be determined. However, the upshot of this analysis is that for data with the amount 

of variability as large as the MASIG data, 20 years may not be quite long enough to 

determine the proper model with very high confidence. It should be pointed out that these 

calculations assumed an equal cost of misclassification (see equation (22)). If there were a 

reason to assume it would be more costly to misclassify the line + AR (and there might be 

because one would falsely predict that global warming was not occurring) then the above 

results might change enough to more strongly choose line + AR as the more acceptable 

model for the MASIG data. 

4.2. GFDL Model 

Traveltime time series along the path from Hawaii to San Diego were obtained from the 

GFDL output by integrating sound speed, obtained from temperature, salinity, and 

pressure (depth) using an appropriate equation of state, along the sound channel axis 

(sound speed minimum). Two time series were obtained from the two separate runs: the 

control run in which constant levels of CO2 were input to the system and the run with 

increasing CO2 levels of 1% per year. Figure 9 shows the time series for traveltime 

anomaly obtained from the control run and figure 10 from the 1% run each plotted for 100 

years (1200 monthly values). It is perhaps surprising that the control run shows a greater 

"cooling" trend (the best fit line has a positive slope of about 1 second over 100 years) than 

the 1% run has "warming" trend (slope of about -0.7 seconds over 100 years).   The 
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appropriate interpretation of these two runs, according to Ron Stouffer at GFDL, is that the 

best prediction of warming is given by "subtracting" the controi run from the 1% run. 

This, indeed, is the purpose for having a control run. An examination of the two plots 

indicates that the two time series are relatively equal for the first 30 years and then start to 

diverge following this "warm-up" period. The best measure of global warming for 20 year 

or so spans in situations where warming has been going on for many years should then 

come from the later portions of these time series. We therefore choose to analyze the last 

500 months (42 years) of these time series. A best fit line through the last 500 points of the 

control time series was computed and this line was subtracted from the 1% series. The 

resulting time series, which has similar statistical character as the 1% series (point by point 

subtraction of the two time series would result in a time series with about twice the variance 

of the individual series) is plotted in figure 11. This is the time series which we will 

analyze in a similar way as the MAS IG time series. The best fit line for this series has a 

slope of about -0.033 sec/yr. 

Figure 9.  Time series of the control run from the GFDL model. 
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Figure 10.  Time series of the wanning run from the GFDL model. 
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Figure 11. Resultant time series for acoustic traveltime anomaly from the GFDL model. 

We divide the time series in figure 11 into 8 intervals with length 5 years (60 points), 

4 intervals with 10 year length (120 points) and 2 intervals with 20 year length 

(240 points).   For each resulting time series we test for the presence of a trend by 
;(2) computing r~' for each series and accept the time series as having significant trend 

?(2) (negative slope) if r~' is less than -1.65. The results are compiled in table 7. 
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Starting Month 5 Years 10 Years 20 Years 

1 Significant Significant Significant 

61 Significant 

121 Significant Significant 

181 Significant 

241 Not Significant Not Significant Significant 

301 Not Significant 

361 Significant Significant 

421 Not Significant 

Table 7.  Significance of trend for various intervals of the GFDL time series. 

The first entry in the second column of the table shows that the time series consisting of the 

first 60 points (5 years) of the GFDL time series has a significant slope, the second 5 year 

interval, including points 61-120, also has significant slope and so on. In all 5 out of the 8 

five year intervals have significant slope and 3 out 4 of the ten year intervals have 

significant slope. All intervals of length greater than or equal to 20 years had slopes which 

were significant. 

The time series was then fit with a line, with slope equal to -0.033 sec/yr, and this line was 

subtracted from the time series. The residuals were modeled as an AR(13) process, given 

by 

(l-1.3308ß+.467852-.063653-.068754+.091055+.175556-.186457 

+.0016£8+.007859-.1122510-.1075511+.0251512+.1395ß13)£', = at, 
(26) 

with white noise variance <7a = .000524.  The factor table associated with the AR(13) 

operator given in equation (26) is shown in table 8. 
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Factor 
Absolute Reciprocal 

of Root 
Frequency 

(cycles/month) 
Period 

(months) 

1-1.7905+.97852 .989 .084 11.9 

1-.939B .939 0 — 

1+.0545+.81252 .901 .255 3.9 

1-.8985 .898 0 — 

1-.7955+.79552 .892 .177 5.7 

1+1.3795+.62752 .792 .418 2.4 

l+.841£+.56852 .754 .344 2.9 

1+.7365 .736 .5 2 

Table 8.  Factor table associated with AR(13) model fit to GFDL residuals. 

The dominant frequency is 0.084 cycles per month, with a corresponding period of 

12 months, or 1 year. The yearly cycle is readily apparent in figure 11. The other 

dominant frequencies are simply harmonics of this lowest frequency. The best fit line + 

AR(13) model for the GFDL time series is, thus, 

Xt =-0.0027 t + Et, (27) 

with Et computed using equation (26).   The slope -0.0027 sec/month is equal to 

-0.033 sec/yr. 

The best fit ARIMA model is 13th order with one unit root, i.e., it is an ARIMA(12,1,0), 

given by 

(l-5)(l-.34405+.124552+.0611ß3-.002854+.088055+.255156 

+.058357+.056658+.067659-.0473510-.15735n-.1230512)xf = at, 
(28) 

with white noise variance  o-2 =.000535.    The factor table associated with the 

ARIMA(12,1,0) operator given in equation (28) is shown in table 9. 
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Factor 
Absolute Reciprocal 

of Root 
Frequency 

(cycles/month) 
Period 

(months) 

1-5 1.000 0 — 

1-1.7905+.97752 .989 .084 11.9 

1+.0625+.807S2 .898 .256 3.9 

1-.792S+.78352 .885 .176 5.7 

1-.8295 .829 0 — 

1-1.3575+.60552 .778 .419 2.4 

1 + .8495+.55352 .744 .347 2.9 

1+.7185 .718 .5 2 

Table 9.  Factor table associated with ARIMA(12,1,0) model fit to GFDL time series. 

The ARIMA(12,1,0) operator has a similar structure to the AR(13) as can be seen by 

comparing table 9 with table 8. The rather random long trends in the data are due to the 

unit root which somewhat dominates the behavior of the series. The next most dominant 

frequency has a corresponding period of 12 months (1 year) and the other frequencies are 

simply harmonics of this frequency. 

100 realizations from the line + AR(13) model given by equation (27) and 100 realizations 

from the ARIMA(12,1,0) model given by equation (28) with lengths of 2.5, 5, 7.5, and 

10 years were simulated and each realization was tested for trend. The percentage of those 

realizations which had a significant trend are shown in table 10. 

Years Line + AR(13) ARIMA(12,1,0) 

2.5 61 60 

5.0 66 63 

7.5 85 67 

10.0 93 62 

Table 10. Percentage of realizations with significant slope for the GFDL model. 
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As expected, it is more likely to observe a trend for the line + AR(13) model the longer time 

series, with virtual certainty obtained in series not much longer than 10 years (120 points). 

Interestingly, the chance of detecting a significant line in the ARIMA(12,1,0) model is 

nearly independent of series length for the lengths considered, although, if the length of the 

series was sufficiently long the chance of a significant line in the ARIMA would be 

negligible. However, for data of this length there is a very real chance that an ARIMA 

might look like a line + noise, as the table shows. 

We now apply the bootstrap procedure to the GFDL time series to determine which model 

best describes the data. The time series was partitioned into shorter time series of length 

5 years (60 points), 10 years (120 points), 20 years (240 points), and 40 years 

(480 points). 100 bootstrap realizations from each model were simulated and the various 

test statistics for the data were compared with the averages of those statistics from the 

bootstrap realizations using the classification criteria equations (20) and (21). Of the 8 

five year time series, 5 had significant slope. The bivariate procedure classified all five 

time series as line + AR and the univariate procedure classified 3 out of the 5 time series as 

ARIMA. For the time series of 10 years length, the bivariate procedure classified 2 out of 

3 as line + AR and the univariate procedure classified 2 out of 3 as ARIMA (3 of the 4 time 

series had significant slope). For the time series of 20 years length, the bivariate procedure 

classified 2 out of 2 as line + AR and the univariate procedure classified 1 out of 2 as line + 

AR. For the single time series of length 40 years, both procedures classified the time series 

as line + AR. 

Table 11 compiles the classification statistics. For each model a number of realizations 

(limited by computer time constraints) are simulated and each realization is classified as 

either line + AR or ARIMA, using both the bivariate classification procedure and the 

univariate white noise ratio classification procedure. Time series of length 5, 10, 20, and 

40 years were simulated. In the table, each entry gives the number of realizations classified 

as the correct model / the total number of realizations (percent correct). For example, the 

first entry for time series length 5 years, actual model line + AR(13) and bivariate 

classification is 12/18 (67%), which means that 12 out of the 18 (67%) realizations from 

the line + AR(13) model were classified correctly, using the bivariate classification (6 out 

of 18 (33%) were classified incorrectly as ARIMA). 
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Line + AR(13) ARIMA(12,1,0) 

Years Bivariate Univariate Bivariate Univariate 

5 12/18 (67%) 22/88 (25%) 7/14 (50%) 52/68 (76%) 

10 8/17 (47%) 28/110(25%) 10/15 (67%) 52/67 (78%) 

20 25/30 (83%) 91/230(40%) 16/26 (62%) 60/78 (77%) 

40 10/10(100%) 94/110 (85%) 3/4 (75%) 34/49 (69%) 

Table 11. Classification table for the GFDL time series. 

It is clear from the table that if the time series is actually line + AR then the bivariate 

classification works much better than the univariate classification , and, in general, works 

better the longer the time series. Indeed, the univariate classification works poorly for 

short time series and these results indicate it should not be used in such cases. If the time 

series is actually generated by the ARIMA model, then the classification is not as sensitive 

to series length (this is to be expected) and the univariate classification works somewhat 

better, especially for shorter series. If the cost for misclassifying line + AR incorrectly is 

greater than misclassifying ARIMA (which is likely to be the case when attempting to 

predict global warming), then the bivariate classification should certainly be used, and, if 

so, the GFDL time series would be classified as line + AR and the warming trend would be 

predicted to continue. 
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5.   CONCLUSION 

Figure 12 plots a portion of the GFDL time series and the MASIG time series (with the 

steepest slope) together for comparison. The GFDL time series is the first 20 years of the 

time series from figure 11 and the MASIG time series is the dashed line of figure 3. The 

slope (of the best fit straight) of the GFDL time series is -0.033 sec/yr and the slope of the 

MASIG time series is -0.10 sec/yr. three times that of the GFDL time series. It is evident 

even by a glance at figure 12. that due to the greater variability in the MASIG data, the 

"trend" is more apparent in the GFDL time series, even though the slope is much less (in 

absolute value). Indeed, our analysis of the previous section has demonstrated this. 

According to that analysis it would take about 20 years to detect a trend 80% of the time in 

a time series like the MASIG series (see table 3) but only about 7 years for the GFDL time 

series (table 9). It is most likely the case that experimental variability will be closer to that 

given by the MASIG simulated data (this data driven model was designed to reproduce 

variabilities seen during the years 1970-1990) and the actual warming trend closer to that 

predicted by the GFDL model. If the we add to the MASIG data a line with slope equal to 

-0.033 sec/yr (the GFDL prediction), then our analyses show that it would take nearly 40 

years to detect a trend just 50% of the time. 
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Figure 12.  Comparison of time series from the GFDL and MASIG models. 
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This large discrepancy in the results for the two different models and the large amount of 

time it would take to detect a warming trend using one path only given the worse case of 

MASIG variability and GFDL trend leads to two conclusions. First, more work by the 

modelers must be done to improve the ocean and climate models. Experimental data 

acquisition of the Acoustic Monitoring of Global Ocean Climate program will be essential 

to make these improvements. Second, extension of our trend extraction techniques which 

uses time series data on many paths at once is necessary. It is reasonable to suppose that 

the length of time necessary to detect a trend in a set of traveltime time series will be 

reduced by considering many paths together. How much this time can be reduced is yet to 

be determined. Further research is therefore needed to see if such reduction can be 

achieved. 
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